• Privacy policy
  • T&C’s
  • About Us
    • FAQ
  • Contact us
  • Guest Content
  • TLE
  • News
  • Politics
  • Opinion
    • Elevenses
  • Business
  • Food
  • Travel
  • Property
  • JOBS
  • All
    • All Entertainment
    • Film
    • Sport
    • Tech/Auto
    • Lifestyle
    • Lottery Results
      • Lotto
      • Set For Life
      • Thunderball
      • EuroMillions
No Result
View All Result
The London Economic
SUPPORT THE LONDON ECONOMIC
NEWSLETTER
The London Economic
No Result
View All Result
Home News

Bacteria go extinct at rates much higher than scientists ever expected

Between 45,000 to 95,000 types of bacteria disappeared in the past million years - contradicting the widely held theory they rarely die off

Joe Mellor by Joe Mellor
2018-07-31 09:38
in News, Science
FacebookTwitterLinkedinEmailWhatsapp

Bacteria go extinct at rates much higher than scientists ever expected, according to new research.

Between 45,000 to 95,000 types of bacteria disappeared in the past million years – contradicting the widely held theory they rarely die off, it found.

But despite the big numbers, bacteria remain resilient to mass extinctions that have hit larger lifeforms like dinosaurs, researchers discovered.

Scientists used groundbreaking techniques to reveal there are between 1.4 and 1.9million bacterial lineages, which are used to categorise bacteria.

They studied the mathematical structures found in DNA to draw up the first ever evolutionary tree for bacteria – and reveal the rate of extinction.

Study lead Postdoctoral Fellow Dr Stilianos Louca at the University of British Columbia said studying the evolution and extinction patterns of bacteria can reveal the “novel ways” simple organisms survive.

He explained: “For over 3.5Gyr (3.5 billion years), the geochemical composition of our planet has been shaped by the evolution and diversification of bacteria.

“Most prominently, the Great Oxygenation Event was caused by cyanobacteria roughly 2.35Gyr ago and dramatically altered Earth’s surface environments and the subsequent evolution of life.

“Despite the prominent role of bacteria in ancient and modern biospheres, little is known about the dynamics by which their diversity evolved over Earth’s history.”

RelatedPosts

Forget WW3, GB News reckons smoky bacon crisps are the real problem facing the UK

MPs back legalising assisted dying in England and Wales

UK temperatures capable of reaching 45C in current climate, Met Office says

Pro-Palestine protesters break into UK air base and damage two military planes

He added: “Bacteria rarely fossilise, so we know very little about how the microbial landscape has evolved over time.

“Sequencing and maths helped us fill in the bacterial family tree, map how they’ve diversified over time, and uncover their extinctions.

“While modern bacterial diversity is undoubtedly high, it’s only a tiny snapshot of the diversity that evolution has generated over Earth’s history.”

Despite the frequent, steady extinction of individual species, they found bacteria have been diversifying exponentially without interruption.

And they avoid the abrupt, planet-wide mass extinctions that have periodically occurred among plants and animals.

The researchers suspect competition between bacterial species drive the high rate of microbial extinctions, leaving them less prone to sudden mass, multi-species extinctions.

Past speciation, which is the formation of new species, and extinction events leave a complex trace in phylogenies – the mathematical structures that encode evolutionary relatedness between existing bacterial species.

Using high-power computers the scientists studied this code to reveal how bacteria has developed and evolved.

Co-author Professor Dr Michael Doebeli, a zoologist and mathematician, said: “This study wouldn’t have been possible ten years ago.

“Today’s availability of massive sequencing data and powerful computational resources allowed us to perform the complex mathematical analysis.”

The researchers were faced with the challenge of accounting for the massive numbers of undiscovered bacterial species to build the tree.

They “used sequencing data from 60 studies in diverse environments across the world” to estimate the diversity of bacteria, the study said.

Dr Louca added: “Our findings suggest that, during the past 1Gyr [one billion years], global bacterial speciation and extinction rates were not substantially affected during the mass extinction events seen in eukaryotic fossil records.

“This conclusion does not support previous speculations that extinctions of plant and animal-associated bacteria – resulting from extinction of their hosts – may contribute substantially to bacterial extinction rates.”

Eukaryotic cells are those of animals, plants and funghi.

He concluded: “Our analysis sheds light on bacterial diversification over geological
time.

“We found evidence that global bacterial diversity has mostly increased over the past 1Gyr, with roughly constant or only slowly changing overall speciation and extinction rates when averaged over all clades.

“This conclusion has implications for how life unfolded over Earth’s history, since bacteria are the most ancient and the most ubiquitous form of life on Earth.

“We estimated that global bacterial extinction rates are only slightly below their speciation rates, and that only a small fraction of bacterial lineages that ever existed survived to the present.

“This has important implications for how we interpret records of ancient life.”

The scientists now plan to study how physiological properties of bacteria evolve over time.

They hope to discover whether their ecological diversity has also been increasing similarly to their taxonomic diversity.

The study is published in Nature Ecology and Evolution.

 

Subscribe to our Newsletter

View our  Privacy Policy and Terms & Conditions

About Us

TheLondonEconomic.com – Open, accessible and accountable news, sport, culture and lifestyle.

Read more

SUPPORT

We do not charge or put articles behind a paywall. If you can, please show your appreciation for our free content by donating whatever you think is fair to help keep TLE growing and support real, independent, investigative journalism.

DONATE & SUPPORT

Contact

Editorial enquiries, please contact: [email protected]

Commercial enquiries, please contact: [email protected]

Address

The London Economic Newspaper Limited t/a TLE
Company number 09221879
International House,
24 Holborn Viaduct,
London EC1A 2BN,
United Kingdom

© The London Economic Newspaper Limited t/a TLE thelondoneconomic.com - All Rights Reserved. Privacy

No Result
View All Result
  • Home
  • News
  • Politics
  • Lottery Results
    • Lotto
    • Set For Life
    • Thunderball
    • EuroMillions
  • Business
  • Sport
  • Entertainment
  • Lifestyle
  • Food
  • Travel
  • JOBS
  • More…
    • Elevenses
    • Opinion
    • Property
    • Tech & Auto
  • About Us
    • Privacy policy
  • Contact us

© The London Economic Newspaper Limited t/a TLE thelondoneconomic.com - All Rights Reserved. Privacy

← Ed Sheeran named among the greatest Yorkshiremen of all time ← Identical twins both graduate with first class honours degree in the same subject
No Result
View All Result
  • Home
  • News
  • Politics
  • Lottery Results
    • Lotto
    • Set For Life
    • Thunderball
    • EuroMillions
  • Business
  • Sport
  • Entertainment
  • Lifestyle
  • Food
  • Travel
  • JOBS
  • More…
    • Elevenses
    • Opinion
    • Property
    • Tech & Auto
  • About Us
    • Privacy policy
  • Contact us

© The London Economic Newspaper Limited t/a TLE thelondoneconomic.com - All Rights Reserved. Privacy

-->